

A facile synthesis of 2-[4'-dimethylaminophenyl]-3-aryl-β-carbolinium phenylsulfonates

Sathananthan Kannadasan and Panayencheri C. Srinivasan*

Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Received 19 December 2001; revised 28 February 2002; accepted 8 March 2002

Abstract—A convenient method for the synthesis of 2-[4'-dimethylaminophenyl]-3-aryl- β -carbolinium phenylsulfonates from the corresponding 2-N'-aryliminomethylene-3- β -arylvinylindoles by thermal oxidative cyclization is reported. © 2002 Published by Elsevier Science Ltd.

The synthesis of various substituted β -carbolines continues to be a goal due to the wide variety of natural products containing this structural unit. It is known that 3,4-disubstituted- β -carboline derivatives block benzodiazepam receptors of the central nervous system (CNS).¹ Due to the biological importance of these compounds there has been much interest in their synthesis through different routes. β -Carboline alkaloids are usually synthesized from tryptamine derivatives either through Pictet–Spengler² or Bischler–Napieralski reactions.³ To the best of our knowledge there is no report on the synthesis of 2,3-diaryl- β -carbolines. In continuation of our studies⁴ on the synthesis of β -carbolines through a non-tryptamine pathway, we report here a synthesis of 2-[4'-dimethylaminophenyl]-3-aryl- β carbolinium phenylsulfonates **5a–c** by an oxidative thermal cyclization of 2-*N*'-aryliminomethylene-3- β arylvinylindoles **4a–c**.

2-Methylindole-3-carbaldehyde 1 was converted to the corresponding1-phenylsulfonyl-3-(β -arylvinyl)-2-bromomethylindoles **2a–c** by the conventional procedure (Scheme 1).^{4c} An Arbuzov reaction of **2a–c** with triethyl phosphite afforded the diethyl [1-phenylsulfonyl-3-(β -arylvinyl)indol-2-yl]methyl phosphonates **3a–c** in 85–91% yields. The structures of these compounds were

Scheme 1.

0040-4039/02/\$ - see front matter @ 2002 Published by Elsevier Science Ltd. PII: S0040-4039(02)00488-4

Keywords: β-carbolinium phenylsulfonates; oxidative thermal cyclization. * Corresponding author. Tel.: 91-44-2351269 ext. 214; fax: 91-44-2352494; e-mail: pancol2000@yahoo.co.in

Table 1.

Entry	Ar	3		5	
		Mp (°C)	Yield (%)	Mp (°C)	Yield (%)
a	2,4-Dichlorophenyl	168	90	192	40
b	4-Bromophenyl	150	85	185	45
с	2-Bromophenyl	154	91	188	42

confirmed by spectral data and in some cases by XRD studies.5 An aza Wittig-Horner reaction6 of the phosphonate esters 3a-c with 4-nitroso-N,N-dimethylaniline afforded 2-N'-aryliminomethylene-3-β-arylvinylindoles 4a-c in 80-86% yields. The structures of compounds 4a-c were confirmed by IR and ¹H NMR spectra only. An oxidative cyclization of compounds 4a-c in boiling acetic acid gave the corresponding quaternary salts of β-carboline, namely 2-[4'-dimethylaminophenyl]-3-aryl- β -carbolinium phenylsulfonates **5a**-c in 40-45% yields (silica gel column EtOAc:MeOH, 95:5). The formation of β-carbolinium salts probably involves an electrocyclization followed by oxidation and hydrolysis of the *N*-phenylsulfonyl group. The structures of compounds **5a–c** were confirmed by spectral studies,⁷ elemental analysis and XRD in the case of 5a (Table 1).⁵

These compounds may be medicinally interesting in the light of an observation that quaternary salts of β -carboline derivatives such as fascaplysin, etc. have shown interesting medicinal properties.⁸ In conclusion we have developed a new route for 2,3-diaryl- β -carbolinium salts via thermal oxidative cyclization of the corresponding imines. Further work on the same line is in progress.

Acknowledgements

The authors thank CSIR, New Delhi for financial support and the UGC-SAP to this department from Government of India for instrument grants.

References

- 1. Narayanan, K.; Cook, J. M. Heterocycles 1990, 31, 203-209.
- 2. Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797-1842.
- (a) Abramovitch, R. A.; Spencer, I. D. Adv. Heterocycl. Chem.; Academic Press: New York, 1964; Vol. 3, p. 79; (b) Whaley, W. M.; Govindachari, T. R. Org. React. 1951, 6, 74.
- (a) Jeevanandam, A.; Srinivasan, P. C. Synth. Commun. 1995, 25, 3427–3434; (b) Mohanakrishnan, A. K.; Srinivasan, P. C. Tetrahedron Lett. 1996, 37, 2659–2662; (c) Mohanakrishnan, A. K.; Srinivasan, P. C. J. Org. Chem. 1995, 60, 1939–1946.
- 5. Velmurugan, D. Professor, Department of Biophysics and Crystallography, University of Madras (personal communication).
- Elango, S.; Srinivasan, P. C. Synth. Commun. 1999, 29, 2043–2051.
- 7. Spectral data for compound **5a**: IR: 3423 (NH), 1383 and 1182 cm⁻¹ (SO₂).
- ¹H NMR (CDCl₃) 300 MHz: δ 2.91 (s, 6H, N(CH₃)₂), 6.46 (d, 2H, J=8.2 Hz, 3' and 5'-H of dimethylaminophenyl ring), 7.09 (d, 2H, J=8.2 Hz, 2' and 6'-H), 7.25–7.90 (m, 11H, Ar-H), 8.13 (d, 1H, J=7.9 Hz, carboline-8-H), 8.26 (s, 1H, carboline-4-H), 9.49 (s, 1H, carboline-1-H), 13.50 (bs, 1H, NH). ¹³C NMR (CDCl₃) 75 MHz: δ 40.03, 111.40, 114.08, 119.13, 121.96, 122.63, 125.96, 126.61, 127.51, 127.97, 129.49, 129.64, 130.23, 131.41, 132.33, 132.53, 132.96, 133.29, 134.38, 135.39, 136.73, 138.71, 145.70, 150.84. Mass (m/z, %): 432 (M+, 41), 434 (M+2, 21), 433 (69), 431 (100), 416 (10), 77 (13).
- Roll, D. M.; Ireland, C. M.; Lu, H. S. M.; Clardy, J. J. Org. Chem. 1988, 53, 3276–3278.